
3474 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Agile Simulation of Stochastic Computing Image Processing
With Contingency Tables

Sercan Aygun , Member, IEEE, M. Hassan Najafi , Member, IEEE,
Mohsen Imani , Member, IEEE, and Ece Olcay Gunes

Abstract—The rapid computerized simulation of stochastic computing
(SC) systems is a challenging problem. A method for agile simulation
of SC image processing is proposed in this work. The input operands
are processed with the aid of a correlation-controlled contingency table
(CT) construct without using actual stochastic bit-streams. The proposed
approach underlines the validity of CT simulation with 1) image com-
positing; 2) pattern detection; and 3) bilinear interpolation case studies.
Using the corresponding error models, we emulate the state-of-the-
art pseudo-random and quasi-random bit-streams. Experimental results
show that the proposed approach achieves similar computation accuracy
to the traditional SC simulation while performing runtime- and memory-
efficient computations. The execution time reduces more than 200× for
the image compositing task when emulating random bit-streams with CT.
Pattern detection and bilinear interpolation further showed 76× and 22×
lower memory usage, respectively, when employing CT.

Index Terms—Computer-aided simulation, contingency table
(CT), image processing, stochastic computing (SC).

I. INTRODUCTION

The simulation of stochastic computing (SC) systems [1] faces
time and memory complexity challenges due to conducting very long
bit-by-bit processing. Especially, simulating SC-based processing of
high-density data like image matrices in row–column format is very
time consuming. In SC, the precision of data and the quality of the
results are affected by the length of stochastic bit-streams [1]. The
larger the bit-stream size (N), the higher the accuracy of the com-
putations [2]. Often very long bit-streams, in orders of 103 to 104

bits, must be processed for high-quality results. To have an output
bit-stream with a resolution of 8 bits, bit-streams of at least 216 bits
need to be processed [3].

SC has been popular for the simple execution of complex image
processing tasks [5], [6], [7], [8], [9], [10], [11], [12], [13], [14].
Considering the large number of image data that need to be processed,
fast simulation of SC-based systems is challenging even with short
bit-stream sizes of 100 bits. Sometimes large design space explo-
rations are done by varying the bit-stream size from hundreds to tens
of thousands bits to study the performance of an SC system.

Manuscript received 12 July 2022; revised 15 October 2022 and
22 December 2022; accepted 22 January 2023. Date of publication
7 February 2023; date of current version 20 September 2023. This
work was supported in part by the National Science Foundation (NSF)
under Grant 2127780 and Grant 2019511; by the SRC Global Research
Collaboration, AIHW and HW Security; by the Department of the Navy,
Office of Naval Research under Grant N00014-21-1-2225 and Grant N00014-
22-1-2067; by the Air Force Office of Scientific Research under Grant
22RT0060; and by the Louisiana Board of Regents Support Fund under
Grant LEQSF(2020-23)-RD-A-26, and generous gifts from Cisco, Xilinx,
and Nvidia. This article was recommended by Associate Editor L. Amaru.
(Corresponding author: Sercan Aygun.)

Sercan Aygun is with the ECE Department, Istanbul Technical University,
34469 Istanbul, Turkey, and also with the School of Computing and
Informatics, University of Louisiana at Lafayette, Lafayette, LA 70503 USA
(e-mail: ayguns@itu.edu.tr).

M. Hassan Najafi is with the School of Computing and Informatics,
University of Louisiana at Lafayette, Lafayette, LA 70503 USA (e-mail:
najafi@louisiana.edu).

Mohsen Imani is with the Department of Computer Science, University of
California at Irvine, Irvine, CA 92697 USA (e-mail: m.imani@uci.edu).

Ece Olcay Gunes is with the ECE Department, Istanbul Technical
University, 34469 Istanbul, Turkey (e-mail: gunesec@itu.edu.tr).

Digital Object Identifier 10.1109/TCAD.2023.3243136

Instead of explicitly generating and processing stochastic bit-
streams, this work performs SC in a radically different way. Simple
arithmetic operations on scalar values replace traditional bit-wise
operations on stochastic bit-streams. The input operands are pro-
cessed with the aid of a contingency table (CT) construct [4]
without explicitly processing bit-streams. This allows latency-free
and memory-aware emulation of SC systems without impacting the
results. We show that similar accuracy to traditional stochastic bit-
stream processing is achieved with this approach. CT’s usage has not
been explored before at the application level. This work studies the
effect of CT in the simulation of SC image processing case studies.
We utilize some simple SC circuits (2-to-1 MUX, XOR, and 4-to-1
MUX) for image compositing, pattern detection, and bilinear inter-
polation tasks for the first time. In summary, the main contributions
of this work are as follows.

1) Developing simple SC designs for three image processing tasks:
2-to-1 MUX (image compositing), XOR (pattern detection), and
4-to-1 MUX (bilinear interpolation).

2) Evaluating CT-based SC simulation for image processing case
studies.

3) Emulating state-of-the-art Sobol-based low-discrepancy (LD),
binomial distributed, and linear-feedback shift register-based
(LFSR) bit-streams with CT.

4) Runtime comparison of SC bit-stream processing and CT-based
simulation on CPU and GPU.

II. STOCHASTIC COMPUTING AND CONTINGENCY TABLES

SC is a re-emerging paradigm for the cost-efficient and fault-
tolerant design of digital systems. Data values are represented with
bit-streams with equal bit significance. Arithmetic operations are
implemented by performing simple bit-wise operations on the bit-
streams. For example, multiplication is realized by bit-wise AND
(XNOR) on unipolar (bipolar) bit-streams [6]. To accurately multiply
two n-bit precision data, bit-streams of at least 22n bits must be pro-
cessed [3]. Generating and processing such long bit-streams is very
time and memory consuming, especially when n increases.

The power of SC stems from the probabilistic behavior of random
bit-streams in which 1s and 0s occur randomly in no specific order. The
state-of-the-art distributions for stochastic bit-streams are binomial
distribution, Sobol-based LD, and LFSR-based pseudo-random. During
bit-stream generation, a stochastic bit-stream generator is coupled
with a comparator that compares a randomly generated binary number
with the to-be-encoded input scalar value. If the scalar value is greater
than the random number, the corresponding bit of the bit-stream is
1; otherwise, it is 0. LFSR-based randomization is the most popular
bit-stream generation method in the literature [15]. LFSR provides
pseudo-randomness with binary numbers that are generated circularly.
Some recent works use Sobol sequences to generate quasi-random
numbers. Sobol sequences are used to generate LD bit-streams for
highly accurate SC arithmetic [16], [17]. The third approach uses
binomial distribution and has been used in the literature in quantifying
the random fluctuation error of SC operations. The probability P,
represented by a stochastic bit-stream, can be considered based on
a set of samples from a random variable (RV) having a Bernoulli
distribution with a success probability of P [18]. Bernoulli distribution
is employed to produce bit-streams with uniformly distributed bits.
This distribution is obtained by using N different Bernoulli trials.

As a bit-stream emulation construct, CT, is a 2×2 table of four scalar
values. As if i-bit bit-streams are generated, the binary interaction

1937-4151 c© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 18,2023 at 18:50:44 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-4615-7914
https://orcid.org/0000-0002-4655-6229
https://orcid.org/0000-0002-5761-0622
https://orcid.org/0000-0001-9186-7424

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3475

Fig. 1. Summary of CT and bit-by-bit simulation, including the theory behind CT and examples. (a) From bit-streams to scalar-only processing. (b) SCC
formula for quantifying correlation. (c) Steps for setting up CT, and the relation between CT primitives (a, b, c, d) and logic operations. (d) Numerical
example with X1 = 2 and X2 = 4 from bit-streams to scalar-only processing. (e) Same example with actual bit-streams.

between input operands (i.e., bit-streams) are recorded for 11, 10,
01, and 00 logic pair overlaps in any i position of the bit-streams.
Fig. 1(a) shows an example of generating a CT. Logic pairs at any
bit position i are cumulatively denoted using a, b, c, and d. These
are called CT primitives. Logic operations are defined using these
primitives. For example, AND operation corresponds to 11 (i.e., a)
bit pairs between the two bit-streams, X1 and X2. Without explicitly
generating bit-streams, the CT is directly generated from the scalar
(binary equivalent) values of X1 and X2, where 0 ≤ X1, X2 ≤ N,
and N is the bit-stream length. Now the question is how to find a, b,
c, and d values directly from scalar values. The answer depends on
“correlation.” For correct functionality, some SC designs need input
bit-streams with maximum correlation. Some others need inputs with
minimum correlation, and some need uncorrelated inputs [1].

To emulate maximally correlated bit-streams, a is set maximally,
while for minimum correlation, a is minimum. a is the first CT prim-
itive we find. The formulas for the maximally (amax) and minimally
(amin) “11” occurrences are presented in Fig. 1(c)-I. After finding
a, by using the scalar values of X1, X2, and N, the other primitives
(b, c, d) are found. The formulas are shown in Fig. 1(c)-II. Finally,
logic operations are converted to basic arithmetic on the primitives.
Fig. 1(c)-III shows how different logic operations can be obtained
from CT primitives.

Besides the cases with maximum and minimum correlation, emulat-
ing uncorrelated or independent bit-streams is important for modeling
SC systems. Stochastic cross correlation (SCC) [Fig. 1(b)] [19] with
range of [−1, 1] is suggested as a metric to quantify the correlation
level between two bit-streams. Two bit-streams are uncorrelated if
SCC ≈ 0. When the SCC formula is solved for SCC = 0, the
following equation is obtained to set up CT for zero correlation:
azero = �([X1 × X2]/N)�. Fig. 1(d) provides an example of setting
up CT for X1 = 2 and X2 = 4. Steps I–III depict the CT formation
for three correlation points: 1) minimum; 2) zero; and 3) maximum.
The numeric table in step III shows the number of 1s in the output
bit-stream resulting from different logic operations. Fig. 1(e) shows
example bit-streams for X1 and X2 scalars for different correlation
points and the corresponding logic results using traditional bit-by-bit
processing. As it can be seen, the logic results shown in Fig. 1(d)
and (e) are the same, proving the correctness of the CT method.

Fig. 2. Generic CT set-up.

III. PROPOSED APPROACH

A. Generic CT Set-Up

We first define a generic CT set-up for simulating multilevel cas-
caded SC circuits. Fig. 2 depicts the encapsulated CT setting followed
from the circuits’ inputs to the output. Considering Y1 and Y2 con-
nected to any gate type at the mid-level, the AND reference gate
is temporarily evaluated using near-zero correlation, azero (step I).
The deviation from the expected value (i.e., error-free multiplication
value) is determined by random fluctuation error, ε, considering the
model of random sources that generate input bit-streams (step II).
The actual value is estimated through ε. Finally, other CT primi-
tives are calculated based on actual a (step III). For more complex
circuits with reconvergent paths (especially when processing longer
bit-streams, e.g., 512 and 1024), the designer may benefit from the
reconvergence involving correlation. At the output of the reconver-
gent paths, signal correlation can be used to define the expected value
via amin or amax. We observe that reconvergence awareness in CT
simulations may be beneficial to reduce error especially for complex
circuits (levels > 3) when processing long bit-streams (please see
the GitHub repository [20] for some examples.) Nevertheless, we
recommend the expected value assignment in Fig. 2 for the image
processing circuits (those having ε �= 0) in Section III-B.

B. SC Image Processing With CT-Based Random Source Emulation

This work extends the SC-based image processing techniques with
three new case studies: 1) image compositing; 2) pattern detection;

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 18,2023 at 18:50:44 UTC from IEEE Xplore. Restrictions apply.

3476 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

Fig. 3. Proposed CT-based (a) image compositing, (b) pattern detection, and (c) bilinear interpolation.

and 3) bilinear interpolation. The first case study is image com-
positing. Szeliski [21] elaborated image compositing by giving the
compositing (C) formula C = B(1 − α) + Fα, where B is the orig-
inal background image, α is the foreground image opacity, and F
is the foreground image. Fig. 3(a)-I shows an example of image
compositing. The image compositing formula reminds the equation
of an SC scaled adder implemented using a multiplexer (MUX):
MUX = PX1(1 − PS) + PX2PS, where PS is the probability of the
select input [6]. The SC MUX formula is elaborated in Fig. 3(a)-II.
As the image compositing and MUX formulas coincide, the image
compositing can be realized by simply using a MUX unit. The main
inputs are the background and foreground image pixel bit-streams,
and the select input is the foreground image opacity, α. The CT model
for a MUX (built from two AND and one OR gates) is obtained using
multiple tables as depicted in Fig. 3(a)-III. Using the scalar values
of B, F, and α, first, the near-zero-correlation CTs are created. Since
the AND operation result is the same as the “a” primitive, CT1 is set
by considering near-zero a (azero): CT1azero = �([B × (N − α)]/N)�.
Likewise, CT2 is set by CT2azero = �([F × α]/N)�. After calculating
the zero-correlated a value, the random fluctuation error (ε) from
the input bit-stream generators should also be taken into account by
carrying out the steps of the generic CT set-up shown in Fig. 2. In
this study, we emulate three different bit-stream generation models:
1) binomial distribution; 2) Sobol LD; and 3) LFSR.

For the binomial distribution case, a stochastic bit-stream having
probability P is considered as a set of samples from RV with a
Bernoulli distribution having a success probability, P. Considering
the independent and identically distributed RV [22], a stochas-
tic number is represented yielding binomial distribution with a
variance σ 2 = P(1 − P)/N. As a reference, the AND operation
(corresponding to CT primitive “a”) has an expected output prob-
ability PY = E[Y], yielding PX1 × PX2 for independent variables.
Nevertheless, the obtained probability, P̂Y , may differ due to random
fluctuations. Using squared error, the random fluctuations error for
the case of Bernoulli RVs is obtained as errY = E[(PY − P̂Y)2] =
PY (1 − PY)/N [1], [23]. From the squared error to the square-
rooted format, the error is ε = √

errY . Considering AND as the
reference and initial operation, we include ±ε in the obtained CT
output probability. Fig. 3(a)-III has AND gates in the first level of
MUX. After obtaining azero, the obtained output probabilities of CT1
and CT2, (a/N), are determined via (azero/N) ± ε. (Our error cal-
culations show that (a/N) + ε has better error performance than
(a/N) − ε; therefore, we use +ε for the model.) For the LFSR
case, we model error by assuming hypergeometric distribution as

recommended by Baker and Hayes [24]. They define the output
deviation of performing bit-wise AND operation on LFSR-based bit-
streams as ε = √

([PX1 × PX2 × (1 − PX1) × (1 − PX2)]/[N − 1]),
where X1 and X2 are the inputs. Finally, unlike the binomial and
LFSR cases, the Sobol-based LD model almost equals the near-zero
correlation CT, i.e., azero, where ε = 0.

In Fig. 3(a)-III, after including the relevant error in CT1 and CT2,
a new CT is set for the next logic operation, which is an OR opera-
tion. Similar to the first level of the circuit, the generic CT set-up is
followed for this level of logic. The expected output probability and
the input probabilities are important for calculating ε in the binomial
and LFSR-based random source error, respectively. The AND gate
model as a reference is initially calculated for the random source
error; thereby, the CT prior primitive a is first fine-tuned. Returning
to Fig. 3(a)-III, for modeling MUX, CT3’s near-zero correlated out-
put probability, (azero/N), is updated with ε. After updating the CT
prior primitive, the other primitives (b, c, d) are calculated for the
final logic operation (e.g., OR gate: a + b + c, recall Fig. 1).

The second case study is pattern detection, shown in Fig. 3(b)-I.
This task is based on maximum correlation. The two inputs from
the main image and the pattern image are maximally correlated to
utilize XOR gate as an SC subtractor. Fig. 3(b)-II elaborates on the
formula and functionality of the XOR gate as an SC primitive. As
shown, when input bit-streams are positively correlated (i.e., have
maximum overlap between the position of 1’s), bit-wise XOR acts
as an absolute subtractor, |PX1 − PX2| [25]. This can be used for
pattern search in an image, where X1 relates to the main image (M),
and X2 holds the pattern (P) to be searched in X1. The difference
gives zero value for the exact pattern match. The CT for the pattern
detection task is elaborated in Fig. 3(b)-III. The model of positively
correlated input operands is established in CT using amax. For this
case study, the generic CT setting assigns amax to the expected value,
which is also equal to the actual value since ε = 0. First amax is
found using min(X1, X2) formula, and then the b and c primitives
are calculated. The XOR result is obtained from CT via b + c, without
explicit bit-stream computing. Thus, the difference between M and P
images is obtained. This operation can be considered a convolution-
like operation; P is shifted as a sliding window over M.

The third case study is bilinear interpolation used for image resiz-
ing. This task is based on linear interpolations in both x (width) and
y (height) directions. By repeating linear interpolations for x and y,
bilinear interpolation is performed. Assume an image I defined by a
rectangular region with four points: (x1, y1), (x1, y2), (x2, y1), and
(x2, y2). A new pixel point in this region is denoted as (x, y), and is to

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 18,2023 at 18:50:44 UTC from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS 3477

TABLE I
COMPARING BIT-WISE BIT-STREAM PROCESSING AND CT APPROACH IN DIFFERENT COMPUTING PLATFORMS*: CPU AND GPU

Fig. 4. Test procedure for simulating SC operations (a) with no data
dependency and (b) with data dependency.

be estimated. Considering the unit square for the rectangular region,
the expression for I(x, y) is (1 − dx)(1 − dy)I11 + (1 − dx)(dy)I12 +
(dx)(1−dy)I21 + (dx)(dy)I22 [26], where I11, I12, I21, I22 are neigh-
boring pixel values, and dx and dy are new pixel’s relative positions
that define resizing coefficient, ρ. An example of bilinear interpola-
tion is shown in Fig. 3(c)-I. We use a 4-to-1 MUX to realize this
task in the stochastic domain. Fig. 3(c)-II shows the binary logic of
a 4-to-1 MUX and the corresponding transformation to bit-stream
processing using probabilities. dx and dy are connected to the select
ports of the MUX. Fig. 3(c)-III depicts the CT model that follows
the same procedures in Figs. 2 and 3(a)-III explained above.

IV. TESTS AND RESULTS

In this section, we evaluate the performance of the proposed tech-
nique compared to the conventional approach of simulating SC.
Before evaluating the performance of the SC image processing
designs, we conduct a preliminary analysis of computer-aided sim-
ulation of SC operations on CPU and GPU. We use Python for the
tests and the Cuda library for GPU simulations. The operations are
guaranteed to run on a single core for the CPU and in parallel for
the GPU tests. For simulating the conventional bit-stream process-
ing, the bit-streams are first generated and stored in memory and
then used for logic operations. We consider two cases of “no data
dependency” [Fig. 4(a)] and “with data dependency” [Fig. 4(b)] in
the SC operations. For the “no data dependency” case, simulations
of single and independent logic operations (i.e., 2-input AND, OR,
XOR, and XNOR) are evaluated. In this case, the logic operation does
not depend on the output of other operations. We denote the total
number of logic operations in each test by micro-operation (μO). N
is selected from {23, 24, . . . , 210} during the tests. The cases “with
data dependency” include cascaded logic operations. In each test,
four-level cascaded logic operations are performed. Each operation
waits for the result of another operation (except the first operation),
thereby having data dependency. The processing times are reported in
Table I for an average of 1000 independent tests. As it can be seen,
the conventional bit-stream simulations are significantly slower than
the CT-based simulations. In all cases, the GPU-based simulation is
faster than CPU-based run. In particular, running on GPU reduces
the simulation time of the conventional bit-stream processing up to
189× compared to running on CPU. We observe that the CT-based
simulation is 142× faster than the conventional approach for simple
logic operations with no data dependency, and delivers 229× better
runtime for the case with data dependency when running on GPU.

Fig. 5. Details of the image processing tasks under test and sample inputs.
(a) Image compositing, (b) pattern detection, and (c) bilinear interpolation.

We also conducted an accuracy evaluation for the circuit structure
shown in Fig. 4(b). We first fed this four-level circuit by binomi-
ally distributed bit-streams, and then constructed the corresponding
CT-based model by considering ε at each level. We compared the
output probabilities from the two models and measured the mean
absolute error (MAE) for 1000 times simulating the circuit with dif-
ferent random input values. For N = 1024, the MAE between two
simulation models was 0.024.

Next, we evaluate the runtime, memory usage, and accuracy of
the three discussed image processing tasks, as shown in Fig. 5. Tests
are developed in the MATLAB tool. For the conventional simula-
tion method, the binornd() function is utilized for generating
the binomially distributed bit-streams. The MATLAB built-in Sobol
generator is used for generating LD sequences. For the LFSR-based
approach, random numbers are generated using the maximal-period
LFSRs described in [27].

First, different foreground images are embedded in different-sized
background images for the image compositing design with N = 256
which can accurately represent 8-bit pixel values of grayscale images.
We evaluate five different cases: 1) SC using binomial random bit-
streams (SCRandom); 2) SC using state-of-the-art Sobol bit-streams
(SCSobol) [16]; 3) CT-based SC with near-zero correlation (CT0); and
4) Conventional binary image processing (CONVN). We also evaluate
a case where the random fluctuations error of random bit-streams is
included in the CT method. Built-in fluctuations based on Bernoulli
distribution are considered during a primitive calculation. This is
given as 5) CT-based SC with random fluctuations (CTRAND).

We note that the emulation of random fluctuations is fairly con-
trolled as both SCRandom and CTRAND methods show similar
PSNR (peak signal-to-noise ratio) values in the image compositing
task. Besides, CT0 competently emulates Sobol-based bit-stream pro-
cessing (SCSobol) as their PSNR values also match. Therefore, this
study also provides a fast and efficient way to simulate LD Sobol-
based SC [17]. As it can be seen in Table II, for both “People” and
“Plane” test images of the image compositing task, the CT-based
approaches (CT0 and CTRAND) are far better in runtime com-
pared to SCSobol and SCRandom methods. Memory performance
of the image compositing task is enhanced by ∼1048.58 Bytes per
MUX-based operation compared to the conventional bit-stream pro-
cessing. Since PSNR is an aggregate measure over all image pixels,
we also evaluate the per-pixel performance between the composite
images produced by the SCRandom and CTRAND methods using

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 18,2023 at 18:50:44 UTC from IEEE Xplore. Restrictions apply.

3478 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 42, NO. 10, OCTOBER 2023

TABLE II
SIMULATION RESULTS OF THE IMAGE PROCESSING TASKS

MAE. First, excluding pixels that bring an absolute error of zero
(|CTRAND − SCRandom| = 0), we only considered the pixels that
have an error (|CTRAND−SCRandom| ≥ 1). The MAEs were 5.897
and 5.352 for the people and plane test images, respectively. MAEs,
when including all pixels, were 2.762 and 2.496, respectively. We
also measured the PSNR values for the case of having all pixels. The
PSNR for the people example was 34.416 dB, and that for the plane
example was 34.950 dB.

We evaluate the pattern detection case study in the follow-
ing scenarios: 1) SC with maximally correlated random bit-
streams (SCMax); 2) CT with maximum correlation (CTMAX); and
3) CONVN. The simulation results are shown in Table II.

For pattern detection, the proposed CTMAX method is as fast as
the conventional binary execution (CONVN). While the SCMax’s
runtime increases by increasing the bit-stream length (N), CTMAX’s
runtime remains constant. The CTMAX’s runtime was the same until
N = 232, after which MATLAB was unresponsive due to the array
size limit. A constant runtime independent of N is another important
advantage of the proposed technique. As Table II shows, the memory
efficiency of CT simulation improves compared to the bit-stream pro-
cessing as N increases. The MATLAB built-in absolute value function
(abs()) makes CONVN slightly slower in pattern detection appli-
cation. However, we observed that the MATLAB built-in functions
speed up for a large number of iterations (> 105) when the size of
testing images increases. Our simulation results show that the CT-
based approach can address the long latency issue of simulating SC
image processing designs, completing the computations as fast as
conventional binary processing.

Finally, we evaluate the simulation of the bilinear interpolation
design. In addition to the previous computing scenarios, we include
conventional SC with LFSR-based bit-stream processing (SCLFSR)
and CT with LFSR-model fluctuations (CTLFSR) in our simulations.
We validated the emulation of the three random source methods.
Particularly, we considered hypergeometric distribution for emulating
LFSR-based bit-streams in the CT model. As expected, the runtimes
were much shorter with CT, and the PSNR values were closely
followed. Memory efficiency was also 22× better with CT-based
simulations compared to conventional SC simulation.

V. CONCLUSION

This work proposes a fast method for the simulation of SC image
processing systems. The data are processed with the aid of CTs
without actual bit-stream processing. The methodology is evaluated
on three SC image processing case studies: 1) image composit-
ing; 2) pattern detection; and 3) bilinear interpolation. Experimental
results show that the proposed approach can simulate SC nearly as

fast as conventional binary processing with a substantial reduction
in memory usage. In future work, we will employ the CT-based SC
simulation technique for fast and efficient simulation of SC-based
deep learning systems.

REFERENCES

[1] A. Alaghi, W. Qian, and J. P. Hayes, “The promise and challenge
of stochastic computing,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 37, no. 8, pp. 1515–1531, Aug. 2018.

[2] A. Alaghi, C. Li, and J. P. Hayes, “Stochastic circuits for real-time
image-processing applications,” in Proc. DAC, Austin, TX, USA, 2013,
pp. 1–6.

[3] M. H. Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel, “Performing
stochastic computation deterministically,” IEEE Trans. Very Large Scale
Integr. (VLSI) Syst., vol. 27, no. 12, pp. 2925–2938, Dec. 2019.

[4] S. Aygun and E. O. Gunes, “Utilization of contingency tables in stochas-
tic computing,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 6,
pp. 2942–2946, Jun. 2022.

[5] M. H. Najafi and D. J. Lilja, “High-speed stochastic circuits using
synchronous analog pulses,” in Proc. 22nd Asia–South Pacific Design
Autom. Conf. (ASP-DAC), 2017, pp. 481–487.

[6] W. Qian, X. Li, M. D. Riedel, K. Bazargan, and D. J. Lilja, “An archi-
tecture for fault-tolerant computation with stochastic logic,” IEEE Trans.
Comput., vol. 60, no. 1, pp. 93–105, Jan. 2011.

[7] M. Ranjbar, M. E. Salehi, and M. H. Najafi, “Using stochastic architec-
tures for edge detection algorithms,” in Proc. 23rd Iran. Conf. Electr.
Eng., 2015, pp. 723–728.

[8] R. Wang, J. Han, B. F. Cockburn, and D. G. Elliott, “Stochastic circuit
design and performance evaluation of vector quantization for differ-
ent error measures,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 24, no. 10, pp. 3169–3183, Oct. 2016.

[9] S. Aygün, M. Altun, and E. O. Güneş, “Sobel filter operation in image
processing via stochastic arithmetic-logic unit design,” in Proc. IEEE
SIU, 2017, pp. 1–4.

[10] P. Li, D. J. Lilja, W. Qian, K. Bazargan, and M. D. Riedel, “Computation
on stochastic bit streams digital image processing case studies,” IEEE
Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 3, pp. 449–462,
Mar. 2014.

[11] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu,
“Gabor filter based on stochastic computation,” IEEE Signal Process.
Lett., vol. 22, no. 9, pp. 1224–1228, Sep. 2015.

[12] N. Onizawa, D. Katagiri, K. Matsumiya, W. J. Gross, and T. Hanyu, “An
accuracy/energy-flexible configurable Gabor-filter chip based on stochas-
tic computation with dynamic voltage–frequency–length scaling,” IEEE
J. Emerg. Sel. Top. Circuits Syst., vol. 8, no. 3, pp. 444–453, Sep. 2018.

[13] K. Boga, N. Onizawa, F. Leduc-Primeau, K. Matsumiya, T. Hanyu, and
W. J. Gross, “Stochastic implementation of the disparity energy model
for depth perception,” in Proc. SiPS, 2015, pp. 1–6.

[14] H. Abdellatef, M. Khalil-Hani, and N. Shaikh-Husin, “Accurate and
compact stochastic computations by exploiting correlation,” Turkish J.
Electr. Eng. Comput. Sci., vol. 27, no. 1, pp. 547–564, 2019.

[15] J. H. Anderson, Y. H. Azumi, and S. Yamashita, “Effect of LFSR
seeding, scrambling and feedback polynomial on stochastic computing
accuracy,” in Proc. DATE, Dresden, Germany, 2016, pp. 1550–1555.

[16] S. Liu and J. Han, “Toward energy-efficient stochastic circuits using
parallel Sobol sequences,” IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 26, no. 7, pp. 1326–1339, Jul. 2018.

[17] M. H. Najafi, D. J. Lilja, and M. Riedel, “Deterministic methods
for stochastic computing using low-discrepancy sequences,” in Proc.
ICCAD, 2018, pp. 1–8.

[18] A. Alaghi, “The logic of random pulses: Stochastic computing,” Ph.D.
dissertation, Dept. Comput. Sci. Eng., Univ. Michigan, Ann Arbor, MI,
USA, 2015.

[19] A. Alaghi and J. P. Hayes, “Exploiting correlation in stochastic circuit
design,” in Proc. IEEE 31st ICCD, 2013, pp. 39–46.

[20] S. Aygun, M. H. Najafi, M. Imani, and E. O. Gunes. “Github.” 2022.
[Online]. Available: https://github.com/serco425/Agile-SC-Simulation

[21] R. Szeliski, Computer Vision: Algorithms and Applications. London,
U.K.: Springer, 2011. [Online]. Available: https://link.springer.com/
book/10.1007/978-1-84882-935-0

[22] R. Manohar, “Comparing stochastic and deterministic computing,” IEEE
Comput. Archit. Lett., vol. 14, no. 2, pp. 119–122, Jul.–Dec. 2015.

[23] B. Moons and M. Verhelst, “Energy-efficiency and accuracy of stochastic
computing circuits in emerging technologies,” IEEE J. Emerg. Sel. Topics
Circuits Syst., vol. 4, no. 4, pp. 475–486, Dec. 2014.

[24] T. J. Baker and J. P. Hayes, “The hypergeometric distribution as a
more accurate model for stochastic computing,” in Proc. DATE, 2020,
pp. 592–597.

[25] V. T. Lee, A. Alaghi, and L. Ceze, “Correlation manipulating circuits
for stochastic computing,” in Proc. DATE, 2018, pp. 1417–1422.

[26] K. Kim, P.-S. Shim, and S. Shin, “An alternative bilinear interpolation
method between spherical grids,” Atmosphere, vol. 10, no. 3, p. 123,
2019. [Online]. Available: https://www.mdpi.com/2073-4433/10/3/123

[27] P. Koopman. “Maximal length LFSR feedback terms.” Accessed:
May 10, 2022. [Online]. Available: https://users.ece.cmu.edu/~koopman/
lfsr/

Authorized licensed use limited to: University of Louisiana at Lafayette. Downloaded on December 18,2023 at 18:50:44 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

